

V1.0 April 2023

PRACTICAL EXAMPLES & FAQ

1. Practical Examples using the RAIN Alliance ISO Numbering System

2. Frequently Asked Questions

3. Table of common PC Word Values using the RAIN AFI

1. Practical Examples using the RAIN Alliance ISO Numbering System

Use of access or kill passwords, user memory, locking, permalocking, and other advanced RAIN RFID
features are not covered in this document. In most cases, these additional tag features do not
impact selection of a numbering system.

Example 1:
I have an existing barcode-based asset tracking system that uses a prefix of 4 letters, follow by 6
numbers. These assets never leave my organization, there are 10,000 of them currently and I add

~100 more each month. Example asset ID numbers are: ABYZ123456, CDWX789012

For a deployment of this size, choose a 6-digit / 24-bit RAIN CIN length. We’ll assume an RFID tag
with 128 bits EPC/UII memory, no User Memory, and no XPC features.

First, select the PC Word value for: Length= 8 words (128 bits), UMI=02, XPC=02, T=12 AFI=0xAE.
From the table, that would be 0x41AE.

We’ll assume the assigned CIN from RAIN is 123456, which in hexadecimal is 0x87C440.

With 128 bits EPC/UII memory available, and a RAIN CIN of 24 bits, that leaves 104 bits for my asset
data. But, first we have to decide how to store the alphanumeric data in hexadecimal or binary.

One option is to use 8-bit ASCII encoding (https://en.wikipedia.org/wiki/ASCII#8-bit_codes). This
approach assigns each number, uppercase and lowercase letter, and some punctuation characters
an 8 bit or 2 Hexadecimal character code. Many RAIN RFID readers, printer/encoders, and software
tools can convert ASCII characters to hexadecimal for either encoding or reading tag data. There are
also many on-line tools available for quick data conversion.

With 10 alphanumeric characters in my asset IDs, converting them to hexadecimal will result in 80
bits or 20 hex characters. But, I have 104 bits of available data, which is enough space for 13
characters. In this example, we’ll just pad the original asset IDs with some extra zeros. Another
option would be to use a shorter length value in the PC word.

https://en.wikipedia.org/wiki/ASCII#8-bit_codes

V1.0 April 2023

ASCII Asset ID Hexadecimal Asset ID (80 bits)

ABYZ123456 0x4142595A313233343536
CDWX789012 0x43445758373839303132

ASCII Asset ID with padded zeros Hexadecimal Asset ID (104 bits)

ABYZ123456000 0x4142595A313233343536303030
CDWX789012000 0x 43445758373839303132303030

Now I can construct the complete EPC/UII:

PC Word
RAIN CIN
Header

Asset ID Hexadecimal
Original Asset
ID

0x41AE 0x01E240 0x4142595A313233343536303030 ABYZ123456

0x41AE 0x01E240 0x43445758373839303132303030 CDWX789012

Example 2.
I run a record keeping system for a large law firm. We need to track more than 1 million
documents per year. Our current document IDs are 16 characters long and alphanumeric. Example
Document ID numbers are: 1234ABCD-4567EFGH and WXZY1234-QRST5678

For a deployment of this size, choose a 4-digit / 16-bit RAIN CIN length. Example 1 used an 8-bit
ASCII encoding scheme, but with 17 characters (including the dash) that would require 152 bits --
136 bits for the data and 16 bits for the CIN. While there are tag ICs available with that amount of
EPC/UII memory, this example will show how to use Base36 encoding (
https://en.wikipedia.org/wiki/Base36) and a more commonly available 128 bit size EPC/UII.

Like example 1, assume an RFID tag with 128 bits EPC/UII memory, no User Memory, and no XPC
features will be used. Also assume the assigned 4-digit CIN from RAIN is 1234, which in hexadecimal
is 0x8952. Before deciding on the PC Word, we need to determine how to encode the document IDs.

Base36 uses the numbers 0-9 and capital Latin letters A-F. It requires <6 bits per character, and for
RFID encoding in hexadecimal it works best for data lengths that are a multiple of 8. In this example
we’ll encode our 16-digit document IDs in 2 groups of 8. Conversion between hexadecimal and
Base36 is not as widely supported as ASCII by RFID software, but it’s a good option encoding scheme
for alphanumeric data in RAIN RFID tags.

It's straight forward to convert between Base36 using an on-line tool, excel, or programming script.
Each group of 8 Base36 characters are converted to 12 hexadecimal characters, which takes 96 bits
total. With our 16-bit RAIN CIN, that makes the total data length 112 bits. Select the PC Word value
for: Length= 7 words (112 bits), UMI=02, XPC=02, T=12 AFI=0xAE. From the table, that would be
0x39AE.

https://en.wikipedia.org/wiki/Base36
https://www.multiutil.com/base36-number-converter/

V1.0 April 2023

PC
Word

RAIN CIN
Header

Asset ID in Hexadecimal Document ID in Base36

0x39AE 0x04D2 0x134D9A27ED 4B9A91D4C1 1234ABCD 4567EFGH

0x39AE 0x04D2 0x25916F59ED0 1E8798E0BA4 WXZY1234 QRST5678

When reading the tags, make sure to use the same process in reverse – converting the hexadecimal
Asset IDs back into Base36 in the same groups of 12 characters.

Example 3.
I want to track company IT assets and both a 6-digit alpha numeric asset ID and a 48-bit device
MAC address on a 128 bit RAIN RFID tag. I expect to use about 500 tags per year. Examples asset
IDs are ABC123 and 789XYZ. Example MAC addresses are 00-14-22-01-2C-45 and 00-40-96-A4-F1-
34.

For a deployment this size, choose an 8 digit / 32-bit CIN length. The 6-digit asset IDs can be
encoded using 8-bit ASCII with 48 bits, followed by the 486bit MAC address which is already
represented in hexadecimal.

Assume we’re using a tag with 128 bits of EPC memory, 32 bits of User memory, and no XPC
features. Select the PC Word value for: Length= 8 words (128 bits), UMI=12, XPC=02, T=12 AFI=0xAE.
From the table, that would be 0x45AE.

We’ll assume the assigned CIN from RAIN is 12345678, which in hexadecimal is 0x85F1C24E.

PC
Word

RAIN CIN
Header

Asset ID + MAC in
Hexadecimal

Asset ID
MAC Address

0x45AE 0xBC614E
0x414243313233
001422012C45

ABC123
00-14-22-01-2C-
45

0x45AE 0xBC614E
0x37383958595A
004096A4F134

789XYZ
00-40-96-A4-F1-
34

Example 4.
I run a logistics business with parcel volume exceeding 100 million packages per year. How can I
use the RAIN ISO numbering system to identify packages within my network?

For a deployment this size, choose a 2 digit / 8-bit CIN length. With a commonly available tag with
128 bits of EPC/UII memory, that would leave 120 bits to encode a package IDs. If used efficiently
120 bits can store 2120 or 1.3×1036 unique numbers – which is an unfathomably large number!

With the RAIN ISO number system, these 120 bits can be encoded using any method desired. One
commonly used approach is to divide the space into sections that represent different attributes. For
example, you might choose to segment the EPC/UII data like this:

V1.0 April 2023

 RAIN CIN Service Level Time Stamp
Origin
Code

Destination
Code

Package
Identifier

Encoded
Length

8 bits 8 bits 24 bits 20 bits 20 bits 48 bits

Numbers
available

90 256 ~16.7 million ~1 million ~1 million ~280 trillion

Purpose
Identifies
tag owner

Freight,
Ground, Air,
Overnight,
Priority, etc.

Identify every
minute since
1/1/2022 for

~32 years

Identify every US ZIP
code, with room to grow

Uniquely
identify 280

trillion
packages

Again assume we’re using a tag with 128 bits of EPC memory, 32 bits of User memory, and no XPC
features. From the table select the PC Word value for Length= 8 words (128 bits), UMI=12, XPC=02,
T=12 and AFI=0xAE, which is 0x45AE. We’ll assume the assigned CIN from RAIN is 12, which in EBV-8
hexadecimal is 0x0C.

For a package shipped at 8am on October 18, 2022 from Chicago ZIP code 60610 to Denver ZIP code
80202 with service level of 0xA5, example tag data might look like this:

PC
Word

RAIN
CIN
Header

Service
Level

Time
Stamp

Origin
Code

Destination
Code

Package
Identifier

0x45AE 0x0C 0xA5 0x066120 0x0ECC2 0x1394A 0x123ABC456DEF

2. Frequently Asked Questions

I encoded ASCII data to my tag, so why is my reader showing me something different?
Most RAIN RFID readers and reader software report tag data in Hexadecimal by default. If you’ve
encoded data using the RAIN ISO numbering system in ASCII, you’ll need to convert the data after the
CIN header from hexadecimal back into ASCII.

Why isn’t my reader showing me the PC word?

Some RAIN RFID readers and reader software don’t show the PC Word by default. Consult with your

reader or software provider to make sure they can support filtering tags by the PC Word.

Why can’t I encode a shipping address in an RFID tag?
RAIN RFID tags have limited amount of memory, the most widely used only have ~128 bits of
encodable memory. While that’s enough space to uniquely identify a mind-bogglingly large number
of items, it’s only enough for 16 ASCII characters.

How do I convert between Decimal, Hexadecimal and Binary?

There are many tools available, including Microsoft Excel conversion functions, the Windows

calculator (in programmer mode), or numerous on-line tool

V1.0 April 2023

3. Table of common PC Word Values using the RAIN AFI

The following table shows valid PC word values in binary and hexadecimal for Toggle Bit = 12,
XPC = 02, AFI = 0xAE, and UMI = 02 or 12.

UMI = 0 UMI =1

EPC/UII Length
(bits)

PC Word
(Binary)

PC Word
(Hexadecimal)

PC Word
(Binary)

PC Word
(Hexadecimal)

0 00000001 01AE 00000101 05AE

16 00001001 09AE 00001101 0DAE

32 00010001 11AE 00010101 15AE

48 00011001 19AE 00011101 1DAE

64 00100001 21AE 00100101 25AE

80 00101001 29AE 00101101 2DAE

96 00110001 31AE 00110101 35AE

112 00111001 39AE 00111101 3DAE

128 01000001 41AE 01000101 45AE

144 01001001 49AE 01001101 4DAE

160 01010001 51AE 01010101 55AE

176 01011001 59AE 01011101 5DAE

192 01100001 61AE 01100101 65AE

208 01101001 69AE 01101101 6DAE

224 01110001 71AE 01110101 75AE

240 01111001 79AE 01111101 7DAE

256 10000001 81AE 10000101 85AE

272 10001001 89AE 10001101 8DAE

288 10010001 91AE 10010101 95AE

304 10011001 99AE 10011101 9DAE

320 10100001 A1AE 10100101 A5AE

336 10101001 A9AE 10101101 ADAE

352 10110001 B1AE 10110101 B5AE

368 10111001 B9AE 10111101 BDAE

384 11000001 C1AE 11000101 C5AE

400 11001001 C9AE 11001101 CDAE

416 11010001 D1AE 11010101 D5AE

432 11011001 D9AE 11011101 DDAE

448 11100001 E1AE 11100101 E5AE

464 11101001 E9AE 11101101 EDAE

480 11110001 F1AE 11110101 F5AE

496 11111001 F9AE 11111101 FDAE

